

British Gypsum Limited East Leake Loughborough Leics. LE12 6NP Tel (0115) 945 1564 Fax (0115) 945 1562 email btc.testing@bpb.com

Report Number BTC 14225A

AN ACOUSTIC TEST REPORT COVERING LABORATORY SOUND INSULATION TESTS TO BS EN ISO 140-3: 1995 ON STRUCTURAL INSULATED PANEL (SIP) SYSTEMS INCORPORATING GYPROC PLASTERBOARD LININGS DIRECTLY FIXED AND ON TIMBER BATTENS.

Test Dates: 13th and 14th October 2005

www.btconline.co.uk

SIP Building Systems Limited Customer:

Expressway Industrial Estate

Turnall Road

Ditton

Widnes

Cheshire WA8 8RD

Customer: SIP Building Systems Limited

BTC 14225A: Page 1 of 22

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

AN ACOUSTIC TEST REPORT COVERING LABORATORY SOUND INSULATION TESTS TO BS EN ISO 140-3: 1995 ON STRUCTURAL INSULATED PANEL (SIP) SYSTEMS INCORPORATING GYPROC PLASTERBOARD LININGS DIRECTLY FIXED AND ON TIMBER BATTENS.

TABLE OF CONTENTS

FOREWORD	3
REPORT AUTHORISATION	
TEST CONSTRUCTIONS	
BTC 14225AA	
BTC 14225BA	5
BTC 14225CA	6
BTC 14225DA	6
BTC 14225EA	7
TEST MATERIALS	8
Structural Insulated Panel (SIP)	8
Gyproc Plank	8
Gyproc FireLine	8
Gyproc SoundBloc	8
Timber components	9
Fasteners	
TEST PROCEDURE	10
TEST RESULTS	10
LIMITATIONS	11
APPENDIX A – TEST DATA	
APPENDIX B – LABORATORY DETAILS	22

Customer: SIP Building Systems Limited

BTC 14225A: Page 2 of 22

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

FOREWORD

This test report details sound insulation tests conducted on structural insulated panel (SIP) systems incorporating plasterboard linings, directly fixed and fixed to timber battens. The test sponsor was SIP Building Systems Limited.

The test specimens were installed by The Building Test Centre. The construction of the specimen took place between the 12th and 14th October 2005. The Building Test Centre played no role in the design or selection of the materials comprising the test specimens.

The tests were witnessed by Mr. Peter Jones on behalf of SIP Building Systems Limited.

REPORT AUTHORISATION

Report Author

Sarah J. Wood

Sarah Wood B.Eng. (Hons.), AMIOA *Section Manager* Authorised by

Dan Patterson BSc. (Hons.), MIOA Technical Manager

The Building Test Centre will not discuss the content of this report without written permission from the test sponsor. The Building Test Centre retains ownership of the test report content but authorises the test sponsor to reproduce the report as necessary in its entirety only.

Customer: SIP Building Systems Limited

BTC 14225A: Page 3 of 22

0296

British Gypsum Limited East Leake Loughborough Leics. LE12 6NP Tel (0115) 945 1564 Fax (0115) 945 1562 email btc.testing@bpb.com

TEST CONSTRUCTIONS

The test panels were supplied pre – fabricated, consisting of two facings of 11mm OSB (oriented strand board) bonded by pressure injection to CFC free/ODP zero polyurethane closed cell foam. The facings and core act as a composite construction.

BTC 14225AA

The panels were positioned within the test aperture to create a double leaf partition with a 50mm cavity. OSB splines, nominally 11mm x 100mm, were used in the joints of the test panel.

The partition was lined on one side only with an inner layer of 19mm Gyproc Plank fixed horizontally with 32mm Gyproc Drywall Timber screws at 600mm centres and an outer layer of 12.5mm Gyproc FireLine fixed with 41mm Gyproc Drywall Timber screws at 300mm centres.

The perimeter of the partition was sealed using Gyproc Sealant. The board joints and screw heads were covered with adhesive tape.

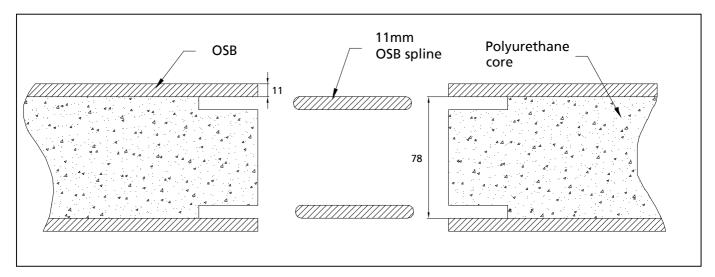


Figure 1. Cross-section through the structural insulated panel

Customer: SIP Building Systems Limited

BTC 14225A: Page 4 of 22

British Gypsum Limited East Leake Loughborough Leics. LE12 6NP Tel (0115) 945 1564 Fax (0115) 945 1562 email btc.testing@bpb.com

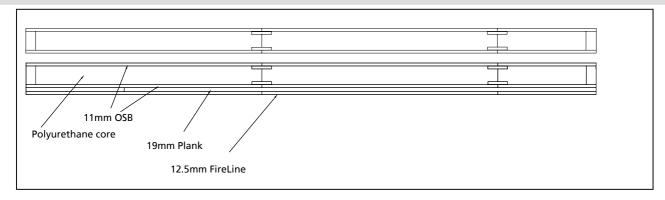


Figure 2. Cross section through test specimen BTC 14425AA

BTC 14225BA

The panels were positioned within the test aperture to create a double leaf partition with a 50mm cavity. OSB splines, nominally 11mm x 100mm, were used in the joints of the test panel.

The partition was lined on one side with an inner layer of 19mm Gyproc Plank fixed horizontally with 32mm Gyproc Drywall Timber screws at 600mm centres and an outer layer of 12.5mm Gyproc FireLine fixed with 42mm Gyproc Drywall screws at 300mm centres.

The other side was lined with an inner layer of 19mm Gyproc Plank fixed horizontally with 32mm Gyproc Drywall screws at 600mm centres and an outer layer of 12.5mm Gyproc FireLine fixed with 41mm Gyproc Drywall Timber screws at 300mm centres both fixed to 25mm (deep) x 50mm (wide) timber battens fixed at 600mm centres onto the face on the SIP panel.

The perimeter of the partition was sealed using Gyproc Sealant. The board joints and screw heads were covered with adhesive tape.

Figure 3. Cross section through test specimen BTC 14425BA

Customer: SIP Building Systems Limited

BTC 14225A: Page 5 of 22

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

BTC 14225CA

The panels were positioned within the test aperture to create a double leaf partition with a 50mm cavity. OSB splines, nominally 11mm x 100mm, were used in the joints of the test panel.

The partition was lined on both sides with an inner layer of 19mm Gyproc Plank fixed horizontally with 32mm Gyproc Drywall Timber screws at 600mm centres and an outer layer of 12.5mm Gyproc FireLine fixed with 41mm Gyproc Drywall Timber screws at 300mm centres both fixed to 25mm (deep) x 50mm (wide) timber battens fixed at 600mm centres onto the face on the SIP panel.

The perimeter of the partition was sealed using Gyproc Sealant. The board joints and screw heads were covered with adhesive tape.

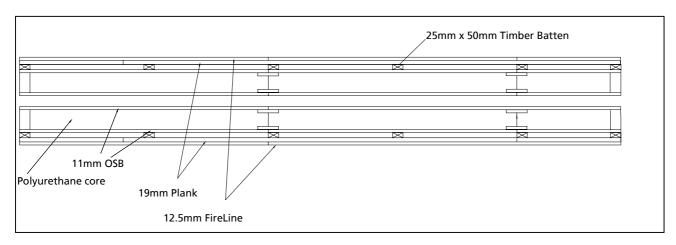


Figure 4. Cross section through test specimen BTC 14425CA

BTC 14225DA

The panels were positioned within the test aperture to create a single leaf partition. OSB splines, nominally 11mm x 100mm, were used in the joints of the test panel.

The partition was lined on one side with a single layer of 12.5mm Gyproc SoundBloc fixed directly to the SIP panel with 32mm Gyproc Drywall Timber screws at 300mm centres.

The other side was lined with a single layer of 12.5mm Gyproc SoundBloc fixed with 32mm Gyproc Drywall Timber screws at 300mm centres to 25mm (deep) x 50mm (wide) timber battens fixed at 600mm centres onto the face on the SIP panel.

Customer: SIP Building Systems Limited

BTC 14225A: Page 6 of 22

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

The perimeter of the partition was sealed using Gyproc Sealant. The board joints and screw heads were covered with adhesive tape.

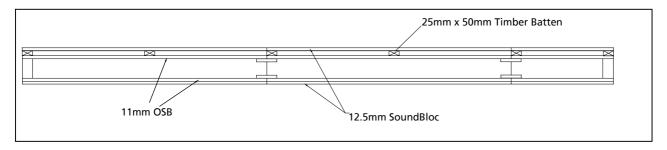


Figure 5. Cross section through test specimen BTC 14425DA

BTC 14225EA

The panels were positioned within the test aperture to create a single leaf partition. OSB splines, nominally 11mm x 100mm, were used in the joints of the test panel.

The partition was lined on both sides with a single layer of 12.5mm Gyproc SoundBloc fixed with 32mm Gyproc Drywall Timber screws at 300mm centres to 25mm (deep) x 50mm (wide) timber battens fixed at 600mm centres onto the face on the SIP panel.

The perimeter of the partition was sealed using Gyproc Sealant. The board joints and screw heads were covered with adhesive tape.

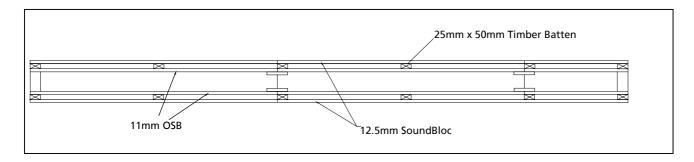


Figure 6. Cross section through test specimen BTC 14425EA

The descriptions of individual components making up the test specimen were provided by the customer and were checked for accuracy wherever possible.

Customer: SIP Building Systems Limited

BTC 14225A: Page 7 of 22

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

TEST MATERIALS

Structural Insulated Panel (SIP)

Nominally 100mm (thick) SIP panel consisting of two facings of 11mm OSB (oriented strand board) bonded by pressure injection to CFC free/ODP zero polyurethane closed cell foam.

Average surface density: 17.18kg/m²

The surface density was calculated using the actual weight and size of one of the panels used in the test specimen.

Gyproc Plank

Nominally 2400mm (long) x 600mm (wide) x 19mm (thick) Gyproc Plank manufactured by British Gypsum Limited.

Average surface density: 15.36 kg/m². Average thickness: 18.86 mm 75 095 05 12:20

Gyproc FireLine

Nominally 2400mm (long) x 1200mm (wide) x 12.5mm (thick) Gyproc FireLine manufactured by British Gypsum Limited, ex Robertsbridge works.

Average surface density: 10.70 kg/m². Average thickness: 12.78 mm Board identification number: 24 119 5 08:09

Gyproc SoundBloc

Nominally 2400mm (long) x 1200mm (wide) x 12.5mm (thick) Gyproc SoundBloc manufactured by British Gypsum Limited, ex East Leake works.

Average surface density: 10.59 kg/m². Average thickness: 12.45 mm Board identification number: 16 249 5 10:35

The surface density was calculated using the actual weight and size of a selection of the boards used in the test specimen.

Customer: SIP Building Systems Limited

BTC 14225A: Page 8 of 22

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

Timber components

Nominally 25mm (deep) x 50mm (wide) timber battens supplied by Nixon Knowles & Co. Limited, Queens Drive Industrial Estate, Nottingham.

Fasteners

- i) 32mm Gyproc Drywall Timber screws.
- ii) 41mm Gyproc Drywall Timber screws.

All fasteners supplied by British Gypsum Limited.

Where measurements could not be taken then weight and dimensions were provided by the customer or the manufacturer e.g. from material labelling. Material information was recorded according to procedure MAT/1.

Customer: SIP Building Systems Limited

BTC 14225A: Page 9 of 22

British Gypsum Limited East Leake Loughborough Leics. LE12 6NP Tel (0115) 945 1564 Fax (0115) 945 1562 email btc.testing@bpb.com

TEST PROCEDURE

The test specimens (3.6 m x 2.4 m) were constructed in a wall dividing two reverberant rooms of approximately 98m³ and 62m³. The accuracy of the test method conforms to BS EN 20140-2:1993, the test procedure used was 140/3 issue 6. Broad-band white noise was used to measure the level differences and broad-band pink noise was used to measure the reverberation times. Third octave band pass filters were used in real time mode. See appendix for further information.

TEST RESULTS

Test Code	Description	Weighted Airborne Sound Reduction Index R _w (C; Ctr)
H14225AA	Double skin SIP partition system with 19mm Gyproc Plank and 12.5mm Gyproc FireLine directly fixed on one side only.	52 (-2; -7)
H14225BA	Double skin SIP partition system with 19mm Gyproc Plank and 12.5mm Gyproc FireLine directly fixed on one side and fixed to timber battens on the other side.	60 (-2; -8)
H14225CA	Double skin SIP partition system with 19mm Gyproc Plank and 12.5mm Gyproc FireLine fixed to timber battens on both sides.	58 (-4; -10)
H14225DA	Single skin SIP partition system with 12.5mm Gyproc SoundBloc directly fixed on one side and fixed to timber battens on the other side.	43 (-2; -7)
H14225EA	Single skin SIP partition system with 12.5mm Gyproc SoundBloc fixed to timber battens on both sides.	42 (-2; -9)

For full data see pages 12 – 21.

Test conducted in accordance with BS EN ISO 140-3: 1995 Rated in accordance with BS EN ISO 717/1: 1997

Customer: SIP Building Systems Limited

BTC 14225A: Page 10 of 22

British Gypsum Limited
East Leake
Loughborough
Leics. LE12 6NP
Tel (0115) 945 1564
Fax (0115) 945 1562
email btc.testing@bpb.com

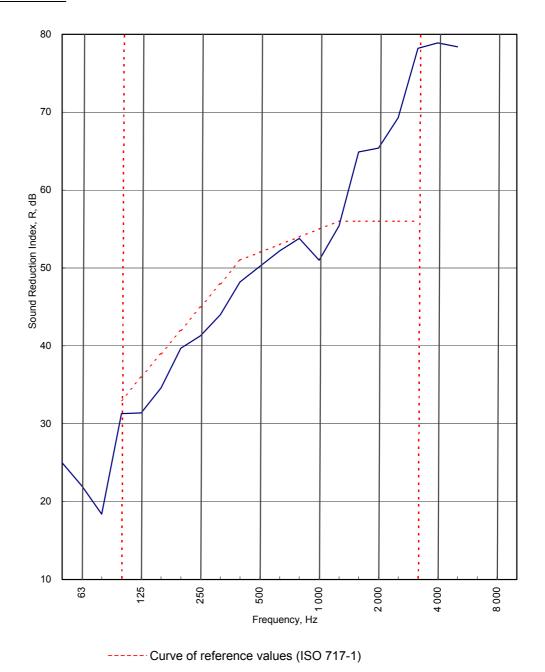
LIMITATIONS

The results only relate to the behaviour of the element of construction under the particular conditions of test; they are not intended to be the sole criteria for assessing the potential acoustic performance of the element in use nor do they reflect the actual behaviour.

The specification and interpretation of test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over 5 years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

Customer: SIP Building Systems Limited

BTC 14225A: Page 11 of 22



<u>APPENDIX A – TEST DATA</u>

BTC 14225AA

Test Code:
Test Code: H14225AA
Test Date:
13/10/05

Freq.	R					
Hz	dB					
50	25.0					
63	22.0					
80	18.4					
100	31.3					
125	31.4 34.6					
160	31.4 34.6					
200	39.7					
250	المينا					
315	44.0					
400	48.2					
500	41.3 44.0 48.2 50.2 52.2					
630	52.2					
800	53.8					
1 000	51.0					
1 250	55.4					
1 600	55.4 64.9					
2 000	64.9 65.4 69.3					
2 500	65.4 69.3					
3 150	78.2					
4 000	78.9					
5 000	78.4					
6 300						
8 000						
10 000						

Rating according to Rw (C;Ctr) = 52 (-2;-7) dB $_{\rm BS}$ EN ISO 717-1:1997 Max dev. 4.6 dB at 125 Hz $_{\rm Evaluation}$ based on laboratory $_{\rm measurement}$ results obtained by an engineering method: $C_{\rm tr,50-3150}$ = -15 dB $C_{\rm tr,50-5000}$ = -15 dB $C_{\rm tr,50-5000}$ = -7 dB

Customer: SIP Building Systems Limited

BTC 14225A: Page 12 of 22

Test Code: **H14225AA** Test Date: **13/10/05**

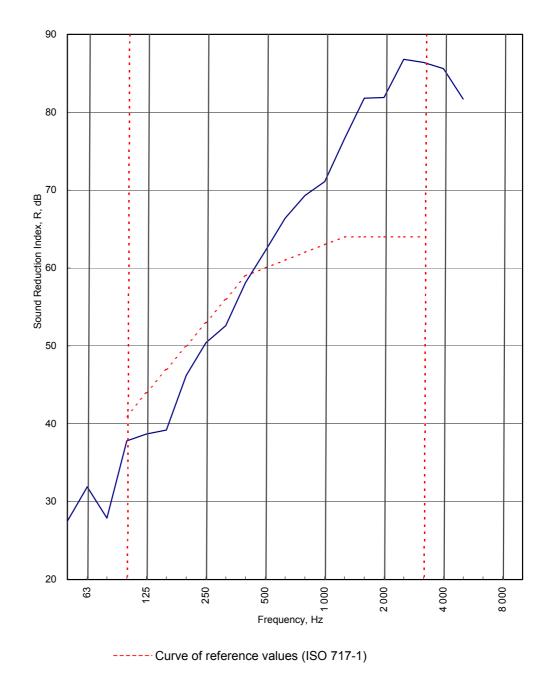
Room T2 Room T1

Specimen Area, $S = 8.64 \text{ m}^2$ Room Volume, m^3 :
98
58.57
Temperature, deg.C:
19

Rel. Humidity, %RH: **63.1 62.6**

						maity, 701			02.0			
			Test Room Ta	2 to Te	st Room	Γ1					R	
Freq	Source	Rec. (ud	c) Bgrnd	F	Rec. (corr)	Rev.	time Corr		R	U.Dev.	1/10ct	
Hz	dB	dB	dB		dB	Se			dB	dB	dB	
50	60.1	32.5	14.3		32.5	0.			25.0			
63	65.9	41.5	19.0		41.5	0.6			22.0		21.0	
80	67.9	46.0	11.8		46.0	0.4			18.4			
100	75.9	44.1	20.7		44.1	0.9			31.3	1.7		
125	79.5	47.7	8.8		47.7	1.0			31.4	4.6	32.2	
160	85.7	50.2	9.0		50.2	0.0			34.6	4.4		
200	92.1	52.8	13.5		52.8	1.			39.7	2.3		
250	95.1	54.6	13.5		54.6	1.3			41.3	3.7	41.3	
315	94.4	51.3	15.1		51.3	1.3			44.0	4.0		
400	93.1	45.9	16.0		45.9	1.3			48.2	2.8		
500	91.3	42.1	13.8		42.1	1.3			50.2	1.8	49.9	
630	90.2	39.0	11.2		39.0	1.3			52.2	0.8		
800	90.9	38.6	15.8		38.6	1.5			53.8	0.2		
1 000	90.5	40.9	10.9		40.9	1.4			51.0	4.0	53.0	
1 250	91.0	37.2	10.2		37.2	1.5			55.4	0.6		
1 600	94.1	31.1	10.5		31.1	1.6			64.9			
2 000	95.9	32.4	10.8		32.4	1.6			65.4		66.1	
2 500	94.6	26.6	9.4		26.6	1.4			69.3			
3 150	93.7	17.4	10.0		16.5	1.3			78.2			
4 000	92.7	16.2	10.8		14.9	1.4			78.9		78.5	
5 000	90.2	13.9	10.6		12.6	1.3	31 0.8		78.4			
6 300												
8 000												
10 000												
 Single Fi	gure Rating	as	Rw	C		Ctr	Tot	al U. De	ev dB	30.9		
_	O 717-1: 19	_	dB	dB		dB			,			
DO EN IO	O / 1/-1. IS	991										
			52	-2		-7						
				4		7						
			(100-5000)	-1		-7						
Backgroun	d Corrected			_		4 =						
			(50-3150)	-5	-	·15						
RT's > fact	or 1.5 apart						Procedure: 1	140/3/issu	ıe 6			
Tested Ser	ially[] Real	Time[X]	(50-5000)	-4	-	·15	Worksheet:	Worksheet: 140_3_1.XLS				

Customer: SIP Building Systems Limited


BTC 14225A: Page 13 of 22

BTC 14225BA

Test Code:
H14225BA
Test Date:
13/10/05

Freq.	R
Hz	dB
50	27.5
63	31.9
80	27.9
100	37.8
125	38.7
160	38.7 39.2
200	46.2
250	
315	50.4 52.6
400	
500	58.1 62.2
630	66.4
800	69.3
1 000	71.1
1 250	66.4 69.3 71.1 76.6
1 600	81.8
2 000	81.9
2 500	81.9 86.8
3 150	86.4
4 000	85.6
5 000	81.7
6 300	
8 000	
10 000	

Rating according to Rw (C;Ctr) = 60 (-2;-8) dB BS EN ISO 717-1:1997 Max dev. 7.8 dB at 160 Hz Evaluation based on laboratory $C_{50-3150}$ = -5 dB $C_{50-5000}$ = -4 dB $C_{100-5000}$ = -1 dB measurement results obtained by an engineering method: $C_{tr,50-3150}$ = -14 dB $C_{tr,50-5000}$ = -14 dB $C_{tr,100-5000}$ = -8 dB

Customer: SIP Building Systems Limited

BTC 14225A: Page 14 of 22

Test Code: **H14225BA** Test Date: **13/10/05**

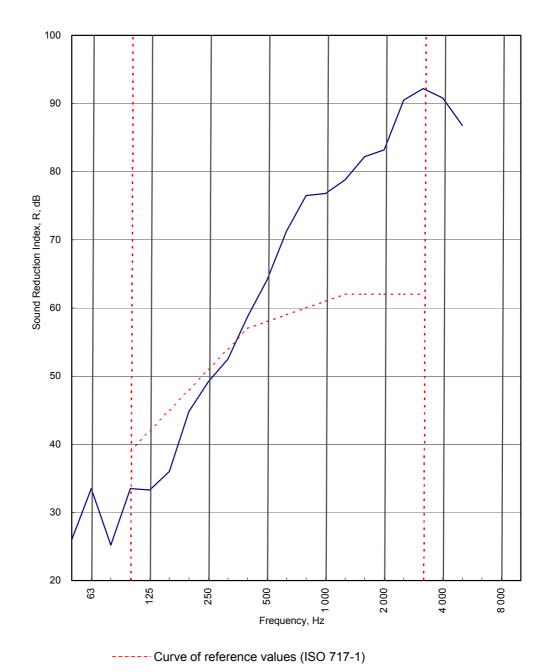
Room T2 Room T1

Specimen Area, S = **8.64** m² Room Volume, m³: **98 58.08** Temperature, deg.C: **18.1 18.8**

Rel. Humidity, %RH: **64.8 62.2**

l			Test Room T2								R
Freq	Source	Rec. (ud		F	Rec. (cori	r) F	Rev.time		R	U.Dev.	1/10ct
Hz	dB	dB	dB		dB		Sec	dB	dB	dB	dB
50	59.4	28.7	12.9		28.7		0.52	-3.2	27.5		
63	65.1	30.4	10.0		30.4		0.57	-2.8	31.9		28.7
80	66.7	36.1	7.8		36.1		0.58	-2.7	27.9		
100	76.2	37.5	15.5		37.5		0.88	-0.9	37.8	3.2	
125	80.0	41.0	6.6		41.0		1.01	-0.3	38.7	5.3	38.5
160	85.9	46.6	5.1		46.6		1.06	-0.1	39.2	7.8	
200	92.4	47.0	7.4		47.0		1.28	8.0	46.2	3.8	
250	95.0	46.0	4.1		46.0		1.49	1.4	50.4	2.6	48.9
315	94.3	42.8	9.1		42.8		1.40	1.1	52.6	3.4	
400	93.1	36.4	13.1		36.4		1.47	1.4	58.1	0.9	
500	91.4	30.2	6.5		30.2		1.36	1.0	62.2		61.0
630	90.1	25.0	9.4		25.0		1.44	1.3	66.4		
800	91.0	23.4	8.0		23.4		1.60	1.7	69.3		
1 000	90.5	21.6	9.3		21.3		1.65	1.9	71.1		71.4
1 250	91.2	17.7	9.8		16.9		1.84	2.3	76.6		
1 600	94.1	15.9	10.2		14.6		1.82	2.3	81.8		
2 000	95.9	17.1	9.2		16.3		1.83	2.3	81.9		83.0
2 500	94.6	10.9	9.7		9.6		1.61	1.8	86.8		
3 150	93.7	10.0	10.1		8.7		1.47	1.4	86.4		
4 000	92.7	9.9	10.3		8.6		1.51	1.5	85.6		84.1
5 000	90.1	10.8	10.9		9.5		1.38	1.1	81.7		
6 300											
8 000											
10 000											
Single Fi	gure Rating	ne	Rw	C		Ctr		Total U. D	ev dR	27	
	0 717-1: 19	-	dB			dB		rotal G. E	, o i ., u b		
R2 EN 12	O /1/-1: 1	997		dB							
			60	-2		-8					
			(100-5000)	-1		-8					
Backgroun	d Corrected		(100 0000)	-							
			(50-3150)	-5		-14					
DT's > foot	or 1.5 apart		(30-3130)	-5		- 1 -	г	Procedure: 140/3/iss	NO 6		
	•		(== ====)	4		4.4					
Tested Ser	ially[] Real	Time[X]	(50-5000)	-4		-14		Worksheet: 140_3_	1.XLS		

Customer: SIP Building Systems Limited


BTC 14225A: Page 15 of 22

BTC 14225CA

Test Code:
H14225CA
Test Date:
13/10/05

Freq.	R
Hz	dB
50	26.0
63	33.5
80	25.2 33.5
100	33.5
125	33.3
160	33.3 36.0 44.8 49.2 52.5 58.7
200	44.8
250	49.2 52.5
315	52.5
400	58.7
500	
630	64.1 71.3 76.5
800	76.5
1 000	76.8
1 250	76.8 78.8
1 600	- 00 0 1
2 000	82.2 83.2 90.5
2 500	90.5
3 150	92.2
4 000	90.8
5 000	86.8
6 300	
8 000	
10 000	

Rating according to Rw (C;Ctr) = 58 (-4;-10) dB BS EN ISO 717-1:1997 Max dev. 9 dB at 160 Hz Evaluation based on laboratory $C_{50-3150}$ = -5 dB $C_{50-5000}$ = -4 dB $C_{100-5000}$ = -3 dB measurement results obtained by an engineering method: $C_{tr,50-3150}$ = -15 dB $C_{tr,50-5000}$ = -15 dB $C_{tr,100-5000}$ = -10 dB

Customer: SIP Building Systems Limited

BTC 14225A: Page 16 of 22

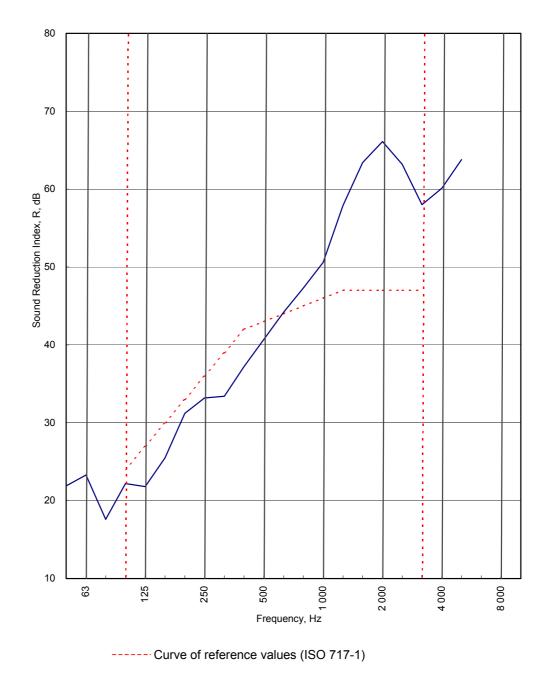
Test Code: **H14225CA** Test Date: **13/10/05**

Room T2 Room T1

Specimen Area, $S = 8.64 \text{ m}^2$ Room Volume, m^3 : 98 57.86

Temperature, deg.C: 19.1 19.5 Rel. Humidity, %RH: 62.6 58.9

						,					
			Test Room Ta	2 to Te	st Room	T1					R
Freq	Source	Rec. (u	c) Bgrnd	F	Rec. (corr)) R	ev.tim	e Corr.	R	U.Dev.	1/10ct
Hz	dB	dB	dB		dB		Sec	dB	dB	dB	dB
50	59.9	30.8	14.7		30.8		0.52	-3.1	26.0		
63	66.4	31.4	18.1		31.2		0.73	-1.7	33.5		27.0
80	66.3	38.0	10.4		38.0		0.53	-3.1	25.2		
100	75.7	41.3	15.5		41.3		0.87	-0.9	33.5	5.5	
125	79.8	46.1	8.1		46.1		0.97	-0.4	33.3	8.7	34.1
160	86.2	50.4	9.5		50.4		1.11	0.2	36.0	9.0	
200	93.1	48.9	12.6		48.9		1.22	0.6	44.8	3.2	
250	95.2	47.4	15.6		47.4		1.49	1.4	49.2	1.8	47.7
315	94.7	43.0	17.6		43.0		1.28	8.0	52.5	1.5	
400	93.6	36.0	18.6		36.0		1.37	1.1	58.7		
500	106.7	43.5	15.4		43.5		1.32	0.9	64.1		62.2
630	104.6	34.7	12.4		34.7		1.47	1.4	71.3		
800	104.1	29.5	14.9		29.3		1.59	1.7	76.5		
1 000	102.8	28.0	12.4		28.0		1.68	2.0	76.8		77.3
1 250	102.1	25.7	11.6		25.5		1.77	2.2	78.8		
1 600	104.0	24.2	11.6		24.0		1.77	2.2	82.2		
2 000	105.7	24.8	10.8		24.6		1.75	2.1	83.2		84.1
2 500	103.4	15.8	10.6		14.5		1.54	1.6	90.5		
3 150	101.5	12.0	11.6		10.7		1.48	1.4	92.2		
4 000	100.1	12.0	12.0		10.7		1.49	1.4	90.8		89.3
5 000	96.3	11.8	12.1		10.5		1.36	1.0	86.8		
6 300											
8 000											
10 000											
Single Fi	gure Rating	ne	Rw	С		Ctr		Total U. D	Nov dB	29.7	
								Total O. L	Jev., ub	23.1	
IRS EN IS	O 717-1: 19	997	dB	dB		dB					
			58	-4		-10					
			(100-5000)	-3		-10					
Backgroun	d Corrected		(.50 0000)	•							
			(50-3150)	-5	•	-15	-				
RT's > fact	or 1.5 apart					4 =		Procedure: 140/3/iss	sue 6		
Tested Serially[] Real Time[X]			(50-5000)	-4	•	<u>-15</u>	1	Worksheet: 140_3_1.XLS			


Customer: SIP Building Systems Limited

BTC 14225A: Page 17 of 22

BTC 14225DA

Test Code:
H14225DA
Test Date:
14/10/05

Freq.	R					
Hz	dB					
50	21.9					
63	23.3					
80	17.6					
100	22.2					
125	21.8 25.5					
160	25.5					
200	31.2					
250	33.2 33.4					
315	33.4					
400	21.8 25.5 31.2 33.2 33.4 37.2					
500	40.7					
630	40.7 44.2					
800	47.3					
1 000	50.6					
1 250	50.6 57.9					
1 600	63.4					
2 000	66 1					
2 500	63.2					
3 150	58.0					
4 000	60.1					
5 000	63.8					
6 300						
8 000						
10 000						

Rw (C;Ctr) = 43 (-2;-7) dBRating according to BS EN ISO 717-1:1997 Max dev. 5.6 dB at 315 Hz $C_{50-3150}$ = -2 dB $C_{50-5000}$ = -1 dB $C_{100-5000}$ = -1 dB Evaluation based on laboratory measurement results obtained by $C_{tr,50-3150}$ = -9 dB $C_{tr,50-5000}$ = -9 dB an engineering method: $C_{tr,100-5000}$: -7 dB

Customer: SIP Building Systems Limited

BTC 14225A: Page 18 of 22

Test Code: **H14225DA** Test Date: **14/10/05**

Room T2 Room T1

Specimen Area, $S = 8.64 \text{ m}^2$ Room Volume, m^3 : 98 59.7 Temperature, deg.C: 17.4 18

Rel. Humidity, %RH: 56.3 56.9

						maity, 701 til		00.0		
			Test Room T2	2 to Tes	st Room	T1				R
Freq	Source	Rec. (ud	c) Bgrnd	R	Rec. (corr)) Rev.tin	ne Corr.	R	U.Dev.	1/10ct
Hz	dB	dB	dB		dB	Sec	dB	dB	dB	dB
50	60.1	34.8	15.1		34.8	0.50		21.9		
63	66.9	42.5	18.5		42.5	0.86		23.3		20.2
80	67.4	47.9	13.8		47.9	0.71	-1.9	17.6		
100	75.2	52.3	21.9		52.3	0.95		22.2	1.8	
125	78.6	56.6	13.8		56.6	1.05		21.8	5.2	22.9
160	85.9	60.6	11.0		60.6	1.17		25.5	4.5	
200	92.4	62.0	14.5		62.0	1.33		31.2	1.8	
250	94.9	62.7	17.0		62.7	1.39		33.2	2.8	32.5
315	94.5	61.7	18.1		61.7	1.27		33.4	5.6	
400	93.5	56.9	18.4		56.9	1.26		37.2	4.8	
500	91.1	51.1	17.3		51.1	1.30		40.7	2.3	39.8
630	90.2	47.0	11.5		47.0	1.40		44.2		
800	91.1	45.1	15.6		45.1	1.49		47.3		
1 000	90.7	41.8	13.3		41.8	1.62		50.6		50.2
1 250	91.4	35.3	9.7		35.3	1.67		57.9		
1 600	94.3	32.7	11.4		32.7	1.66		63.4		
2 000	96.0	31.5	10.4		31.5	1.58		66.1		64.0
2 500	94.5	32.5	9.6		32.5	1.46		63.2		
3 150	93.6	36.4	10.6		36.4	1.32		58.0		
4 000	92.5	33.4	11.5		33.4	1.38		60.1		60.0
5 000	90.2	26.9	11.6		26.9	1.24	0.5	63.8		
6 300										
8 000										
10 000										
Single Fi	gure Rating	as	Rw	С		Ctr	Total U. I	Dev dB	28.8	
BS EN ISO 717-1: 1997		dB	dB		dB				J	
DO EN IS	50 /1/-1: 1:	997								
			43	-2		-7				
			(100-5000)	-1		-7				
			(50-3150)	-2		-9				
RT's > fact	or 1.5 apart		(55-5155)	_		_	Procedure: 140/3/is	sue 6		
	Tested Serially[] Real Time[X]			-1		-9	Worksheet: 140_3			
	7. 1		(50-5000)							

Customer: SIP Building Systems Limited

BTC 14225A: Page 19 of 22

Test Code: **H14225EA** Test Date: **14/10/05**

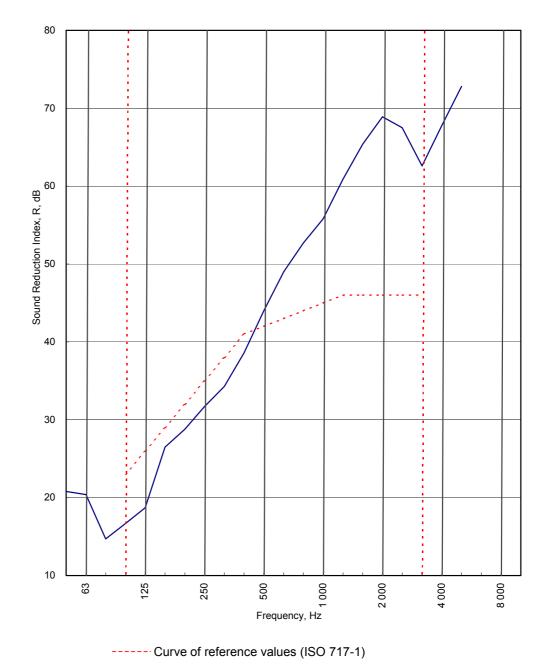
Room T2 Room T1

Specimen Area, $S = 8.64 \text{ m}^2$ Room Volume, m^3 : Temperature, deg.C: 18.4

Temperature, deg.C: 18.4 18.4 Rel. Humidity, %RH: 51.7 51.8

						•					
			Test Room T2	2 to Te	st Room	T1					R
Freq	Source	Rec. (uc) Bgrnd	F	Rec. (corr)) R	Rev.time	e Corr.	R	U.Dev.	1/10ct
Hz	dB	dB	dB		dB		Sec	dB	dB	dB	dB
50	61.8	37.7	20.1		37.7		0.52	-3.3	20.8		
63	66.8	45.1	23.5		45.1		0.82	-1.3	20.4		17.7
80	66.8	49.6	14.1		49.6		0.62	-2.5	14.7		
100	74.7	56.0	21.8		56.0		0.69	-2.0	16.7	6.3	
125	77.8	57.7	11.6		57.7		0.80	-1.4	18.7	7.3	19.1
160	85.3	58.7	10.8		58.7		1.08	-0.1	26.5	2.5	
200	91.8	63.5	17.8		63.5		1.24	0.5	28.8	3.2	
250	94.4	63.4	15.9		63.4		1.29	0.7	31.7	3.3	31.0
315	94.8	61.5	18.6		61.5		1.40	1.0	34.3	3.7	
400	93.2	55.3	19.9		55.3		1.29	0.7	38.6	2.4	
500	91.4	47.9	18.0		47.9		1.24	0.5	44.0		42.0
630	90.3	42.4	15.6		42.4		1.43	1.1	49.0		
800	91.0	39.6	16.4		39.6		1.49	1.3	52.7		
1 000	90.6	36.2	14.9		36.2		1.52	1.4	55.8		55.3
1 250	91.3	32.1	13.2		32.1		1.64	1.7	60.9		
1 600	94.3	30.7	13.2		30.7		1.67	1.8	65.4		
2 000	96.1	28.8	15.9		28.6		1.53	1.4	68.9		67.0
2 500	94.7	28.5	11.4		28.5		1.47	1.3	67.5		
3 150	93.7	31.9	13.8		31.9		1.32	8.0	62.6		
4 000	92.6	27.0	22.4		25.7		1.35	0.9	67.8		65.9
5 000	90.2	19.3	17.5		18.0		1.27	0.6	72.8		
6 300											
8 000											
10 000											
Single Figure Ratings		gle Figure Ratings RW		C Ctr Total U. I				Dev., dB 28.7			
BS EN ISO 717-1: 1997		dB	dB		dB			,			
DO LIVIO	0 / 1/-1. 13) J I									
			42	-2		-9					
				_		_					
			(100-5000)	-1		-9					
Background Corrected											
			(50-3150)	-3		-11					
RT's > factor 1.5 apart			(=====	-			П	Procedure: 140/3/iss	sue 6		
Tested Serially[] Real Time[X]			(50-5000)	-2		-11		Worksheet: 140_3_			

Customer: SIP Building Systems Limited


BTC 14225A: Page 21 of 22

BTC 14225EA

Test Code:
Test Code: H14225EA
Test Date:
Test Date: 14/10/05

Freq.	R					
Hz	dB					
50	20.8					
63	20.4					
80	14.7					
100	14.7 16.7					
125	18.7					
160	18.7 26.5					
200	28.8					
250	28.8 31.7 34.3					
315	34.3					
400	18.7 26.5 28.8 31.7 34.3 38.6					
500	44.0 49.0					
630	49.0					
800	52.7					
1 000	55.8					
1 250	55.8 60.9					
1 600	49.0 52.7 55.8 60.9 65.4					
2 000	68 0					
2 500	67.5					
3 150	62.6					
4 000	67.8					
5 000	72.8					
6 300						
8 000						
10 000						

Rw (C;Ctr) = 42 (-2;-9) dBRating according to BS EN ISO 717-1:1997 Max dev. 7.3 dB at 125 Hz $C_{50-3150}$ = -3 dB $C_{50-5000}$ = -2 dB $C_{100-5000}$ = -1 dB Evaluation based on laboratory measurement results obtained by $C_{tr,50-5000}$ = -11 dB $C_{tr,100-5000}$ - -9 dB an engineering method: $C_{tr,50-3150}$ = -11 dB

Customer: SIP Building Systems Limited

BTC 14225A: Page 20 of 22

<u>APPENDIX B – LABORATORY DETAILS</u>

The source room (T2) was treated with six perspex diffusers of approximately 900mm x 1220mm. An omni-directional loudspeaker sound source is placed near a back corner of the source room (T2), rotating at 1 rpm and at least 0.7m from any room boundary to satisfy Annex C of BS EN ISO 140-3: 1995. A stationary loudspeaker sound source is placed in the corner of the receiving room (T1) opposite the test specimen.

The average sound pressure level in each 1/3 octave band is measured using a rotating microphone boom, positioned such that the minimum distance between microphone and sound source is 1m and between microphone and room boundaries is 0.7m. The rotating microphone has a sweep radius of at least 1m and is inclined in relation to the boundaries at an angle of at least 30° to the horizontal. The microphone has a traverse time of 32 seconds, and the sound pressure levels are averaged over 64 seconds which is equivalent to two complete sweeps of the microphone boom.

The equivalent absorption area of the receiving room is determined by producing the arithmetic average of six reverberation times and applying this to the Sabine formula.

The test specimen is installed in the aperture so that it finishes flush with the last timber in room T2 side to eliminate indirect transmission between rooms. The specimen is not installed so that the aperture depth ratio 2:1 is met as recommended in section 5.2.1 of BS EN ISO 140-3:1995. Laboratory tests have been carried out to prove the insignificance of this installation position on the test results.

The laboratory limit for measurement due to flanking is (combined BTC 11709A and BTC13562EA)

```
5000
Freq
              63 80 100
                             125
                                     160
                                          200
                                                250
                                                       315
                                                             400
                                                                   500
                                                                         630
                                                                               800
                                                                                     1000
                                                                                            1250
                                                                                                   1600
                                                                                                          2000
                                                                                                                  2500
                                                                                                                         3150
                                                                                                                                4000
         45.0 46.9 58.5 62.4 62.9
                                    67.7 71.2 77.2 84.2 92.0 97.7 101.5 103.8 97.6
                                                                                            102.4
                                                                                                   104.8
                                                                                                          101.8
                                                                                                                 102.9
                                                                                                                        98.7
                                                                                                                                93.9
                                                                                                                                       91.1
```

The figure below show flanking and isolation treatments in the test chamber.

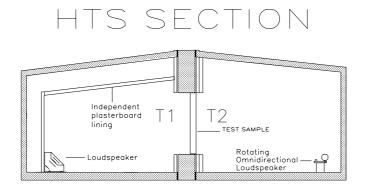


Figure 7. Chamber layout

BTC 14225A: Page 22 of 22